

Volume Imaging and more

Katya Rechav

Electron Tomography Virtual Workshop 23-26November, 2020

SEM column

imaging

Four applications. Two devices. One system

Scanning Electron Microscope

Focused Ion Beam

Gas Injection System

Micromanipulator

EDX spectrometer

STEM detector

Cryo stage

FIB column

milling

SEM image formation

🚯 🄇

IMAGING LIFE FROM MOLECULES TO CELLS

Interaction volume and emission region

30kV electrons Vs Ga⁺ ions

Monte-Carlo Simulation Casino v2.42

30kV electrons Vs Ga⁺ ions

Monte-Carlo Simulation Casino v2.42

Interaction volume at different electron energy

FIB working modes

Dual beam FIB - SEM geometry

Dual beam FIB - SEM geometry

Nanofabrication: principles, capabilities and limits, by Zheng, Cui, 2008

Surface damage induced by FIB milling and imaging of biological samples is controllable. Drobne D., Microsc Res Tech. 2007 Oct;70(10):895-903.

seconds about preparation

FIB – SEM Volume imaging

Ion Beam view – slicing

Chlorella alga infected by PBCV-1

The Viral Factory spatial organization and its replication cycle

1 µm

SEM view – imaging

SEM images stack alignment

FIB-SEM dataset reconstruction

74 nm vesicle at 15 nm z-interval. 6 serial X-Y images

Saccharomyces cerevisiae yeast cell

Optimizing acquisition parameters

- Smallest feature size
- SNR vs damage
- Acquisition time
- Data size
- System stability

FOV	pixel size	pix in frame	pix num	frame time
10um x10um	10nm	1000x1000	1million	30s
100um x100um	10nm	10kx10k	100m	5 min

Resolution measurement

r 20 nm

46 nm

(a) Regular array of ribosomes model. RS Morgan. Science 1965

Y-Z plane of aligned stack

FIB – SEM Volume imaging

3D editor

Dragonfly

Object Research Systems, Montreal, Canada

Epithelia cells interface. With: Nili Dezorella Melanie Bokstad Inna Grosheva (Geiger's Lab, WIS)

Defining the area of interest

You don't really see the object before cutting

ROI

The challenge of ROI identification

- "in blind"
- acquisition of large volume
- topography block face relief
- BSE image of the sample surface
- correlative with TEM, MicroCT, LM...

Lashbrooke et al., Plant physiology 2015

Dhanyasi et al. J Cell Biology 2015

Revach et al., SCIENTIFIC REPORTS, 2015

Correlative Fluorescent Microscopy

fluorescent proteins or synthetic fluorophores

Focused ion beams in biology.

Kedar Narayan and Sriram Subramaniam. NATURE METHODS, 2015.

Protein

Correlative FM-FIB (confocal)

Macropinosomes are Key Players in Early Shigella Invasion and Vacuolar Escape in Epithelial Cells. Weiner et al., PLoS Pathogens 2016 Movie: courtesy of Allon Weiner Cimi-Paris, Faculty of Medicine, Sorbonne University **Cryo FIB applications**

Cryo stage (Leica) + CrossBeam 550 (Zeiss)

Cryo shuttle

Cryo holder (modified)

FIB column

MAGING LIFE FROM MOLECULES TO CELLS

SEM column

Loading station (modified)

Cryo FIB applications

Biomineralization – calcium transport mechanism

Volume Imaging (HPF)

sea urchin embryo

Cryo-FIB-SEM Large volume structural analysis of HPF sea urchin embryo

3D reconstruction of the stack X = 20 $\mu m,$ Y = 12 μm Z = 11 μm

N. Vidavsky et al., Journal of Structural Biology, 2016

Cryo volume imaging+ EDS characterization

Thalassiosira pseudonana cells in (A) valve view, (B) girdle band view. (C) Freeze-fractured *T. pseudonana* cell showing internal organelles.

BSE image of a cryo-FIB milled cross section of HPF pellet containing *T. pseudonana cells*

Intracellular silicon concentrations in unsynchronized *T. pseudonana* cells as revealed by cryo-focused ion beam milling followed by energy-dispersive Xray spectroscopy. (upper row: cell with low concentration Si-pool, bottom row: cell with high concentration Si-pool

Imaging and quantifying homeostatic levels of intracellular silicon in diatoms. S Kumar et al., Science advances, 2020

3D animation of *T. pseudonana* cell. From FIB-SEM acquisition at cryo-conditions.

Cryo CLEM + **volume imaging**

Fluorescence signal under cryo-light Objective Olympus x40, cryo stage Linkam MDA-MB-231 Human metastatic breast cancer cells

With Neta Varsano, Lia Addady&Steve Weiner group, WIS

SiO2 particles are detectable inside plunged cell

IMPACT IMAGING LIFE FROM MOLECULES TO CELLS

X

SiO2 particles are detectable inside plunged cell

Pixel Size: 14.28 nm Slice thickness: 17.5 nm

With Neta Varsano, Lia Addady&Steve Weiner group, WIS

(8) IMpa

FROM MOLECULES

Cryo volume imaging

HPF bone part with surrounding tissue. The Pectoral Fin Rays of Mudskipper *With Lihi Vevin, Addady's lab*

- Low contrast
- Charging artifacts
- **Topographical artifacts curtaining**
- **BOI definition for HPF prepared samples**
- 🙁 Beam damage

Plunged yeast cell.

With Idan Pereman, Elbaum's lab

Cryo FIB applications

cryo-FIB lift-out lamella

molecular-resolution cryo-ET within native *C-elegans* tissue

M. Schaffer, Nature Methods 2019

IM

TO CELLS

Cryo lamellae workflow

Cells growing

Plunging

Transfer to cryo LM

Imaging in cryo LM

Clipping to AutoGrid rim

Transfer to FIB

cryo holder

Transfer to FIB/SEM

Loading in FIB/SEM

on sample

Mapping ROIs Serial imaging / FIB lamellae cutting

Unloading from FIB/SEM

Transfer to LN2 storage **Krios autoloader**

TEM/STEM analysis

Illustration: from **delmic** product presentation

Risks: Samples damage due to devitrification / ice contamination / mechanical damage Milling "blind" and missing the structure of interest in the lamella due to low z-resolution of FM

Cryo lamellae preparation

With Debakshi Mullick, Elbaum's lab

Biomineralization – calcium transport mechanism

Cryo FIB prepared on-grid lamella of PMC (skeleton forming cell)

Ø ♥ Ø IMpaČT

IMAGING LIFE FROM MOLECULE TO CELLS **Biomineralization – calcium transport mechanism**

Cryo FIB lamella + TEM EDS analysis

With Keren Kahil, Addadi's group WIS

Ę

IMpaCT FROM MOLECULES

*

Structure & functionality of photosynthetic bio-machineries

Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Rast A et al. Nat. Plants (2019)

With: Nir Kedem, Hebrew University Ziv Reich, WIS

Structure & functionality of photosynthetic bio-machineries

Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Rast A *et al.* Nat. Plants (2019)

Contraction of the second

Thanks to my colleagues and friends

Eyal Shimoni	מכרו ויצמן למדע	Tt's a mammoth
Sharon Wolf	WEIZIWANNY INSTITUTE OF SCIENCE	
Tali Dadosh		A
Ifat Kaplan-Ashiri		
Nadav Elad		
Lothar Houben		
Olga Brontvein	Michael Elbaum – WIS	
Anna Kossoy		Early microscope
Smadar Zaidman	Julia Mahamid – EMBL, Heidelberg EMBL	
Orna Yeger	Andreas Schertel – Zeiss Microscopy, Oberkohen ZEISS	
Elena Kartvelishvily		
Konstantin Blinder		
Sergey Kapishnikov		

Thank You